CALCULUS: Graphical,Numerical,Algebraic by Finney, Demana, Watts and Kennedy Chapter 6: Differential Equations 6.2: Integration by Recognition

What you'll Learn About

- How to integrate a product by recognizing that one of the pieces contains the derivative of the other

18) $\int x \cos \left(2 x^{2}\right) d x \quad \mathrm{u}=2 \mathrm{x}^{2}$
19) $\int \frac{d x}{x^{2}+9} \quad \mathrm{u}=\frac{x}{3}$
20) $\int 8\left(x^{4}+4 x^{2}+1\right)^{2}\left(x^{3}+2 x\right) d x \quad \mathrm{u}=x^{4}+4 x^{2}+1$

$4 \mid \mathrm{Page}$

[^0]

6|Page

\int (PolynomialFunction)(PolynomialFunction) -
Take the antiderivative of one of the polynomialfunctions using the powerrule and thencheck
\int numeratoris derivative of the bottom
polynomialfunction whosepoweris not 1

- Flip the denominator up to the topand then bump the powerup on thatdenominator and check
$\int \frac{\text { polynomialfunction }}{\text { polynomialfunction hat is the derivative of part of the top }}$
- Take the antiderivative of the numeratorand check
$\int \frac{\text { function hat is thederivativeof the bottom }}{\text { function whosequantity is to thefirst power }}$
- Write down theln(denominator) and check

If the denominator's quantity is to the first, the antiderivative is either arctangent or natural \log (ln)
\square
CALCULUS: Graphical,Numerical,Algebraic by Finney, Demana, Watts and Kennedy Chapter 6: Differential Equations

6.3: Tabular Integration

What you'll Learn About

- How to integrate a product by that cannot be done by recognition

Proof of Integration by
Parts

1. Find $\frac{d}{d x}(u v)=$

Use ultra violet minus super vdu to integrate the following
2. $\int \mathrm{Xe}^{\mathrm{x}}=$
2. Integrate both sides
3. Solve for $\int u d v$

Use tabular integration to integrate the following
2. $\int \mathrm{Xe}^{\mathrm{x}}=$

$\mathbf{1 0 | P a g e}$

\(\left.\begin{array}{|l|l|}\hline \&

Use tabular integration to integrate the following

10 . \int x^{2} \ln x d x\end{array}\right]\)| Use ultra violet minus super vdu to integrate the following |
| :--- |
| $10 . \int x^{2} \ln x d x$ |

$\mathbf{1 2 | P a g e}$
\(\left.\begin{array}{|l|l|}\hline Use tabular integration to integrate the following

A. \int \arcsin (x) d x\end{array}\right]\)| $19 . \int e^{x} \cos (2 x) d x$ |
| :--- |

Top Heavy Integrals	
A. $\int \frac{x^{2}+x}{x} d x$	
	B. $\int \frac{\sqrt{x}+5}{x} d x$ C. $\int \frac{x^{3}+2 x}{\sqrt{x}} d x$

CALCULUS: Graphical,Numerical, Algebraic by Finney, Demana, Watts and Kennedy Chapter 6: Differential Equations 6.5: Partial Fractions

What you'll Learn About

- How integrate a fraction when the denominator can be factored and the numerator is not the derivative of the denominator

$$
\text { A) } \int \frac{x-12}{x^{2}-4 x} d x
$$

$$
\text { B) } \int \frac{16-x}{x^{2}+3 x-10} d x
$$

C) $\int \frac{2}{2 x^{2}+3 x+1} d x$ D) $\int \frac{x^{3}-5}{x^{2}-1} d x$

$\mathbf{1 6} \mid \mathrm{Pa}$ g e

	$f^{\prime}(\mathrm{x})=\frac{2 x^{3}}{x^{3}-x}$

$\mathbf{1 7}$ | Page

$\mathbf{1 8} \|$ Page

What you'll Learn About

- How to recognize a logistical growth differential equation

I am sick (Initial Value). Eventually everyone gets sick(Max). So what happens to the rate of people getting sick. People will get sick quickly, then it will be harder to find people that aren't sick yet (rate slows down-point of inflection) and eventually everyone gets sick.

This is similar to a rumor spreading or facebook/twitter accounts.
$\frac{d P}{d t}=k P(M-P)$
$\frac{d P}{d t}$ rateof grow thof people getting sick
kp : directly proportional to the sick people
M-P : healthy people(Notsick yet)

Remember directly proportional is just like $\mathrm{P}=8.50 \mathrm{~h}$ (Your pay is directly proportional to the amount of money you make which can change) That 8.50 is your k .

In 1985 and 1987, the Michigan Department of Natural Resources airlifted 61 moose form Algonquin Park, Ontario to Marquette County in the Upper Peninsula. It was originally hoped that the population P would reach carrying capacity in about 25 years with a growth rate of $\frac{d p}{d t}=.0003 P(1000-P)$

Solve the differential equation with the initial condition $\mathrm{P}(0)=61$.

	 24. Which of the following differential equations for a population P could model the logistic growth shown in the figure above? A) $\frac{\mathrm{dP}}{\mathrm{dt}}=.02 P-0.0008 P^{2}$ B) $\frac{\mathrm{dP}}{\mathrm{dt}}=.08 P-.0002 P^{2}$ C) $\frac{\mathrm{dP}}{\mathrm{dt}}=.8 P^{2}-0.0002$ D) $\frac{\mathrm{dP}}{\mathrm{dt}}=0.08 P^{2}-.0002$ E) $\frac{\mathrm{dP}}{\mathrm{dt}}=0.08 P^{2}-0.0002 \mathrm{P}$
	21. The number of moose in a national park is modeled by the function M that satisfies the logistic differential equation $\frac{d M}{d t}=.05 M\left(1-\frac{M}{1000}\right)$, where t is the time in years and $\mathrm{M}(0)=50$. What is the $\lim _{t \rightarrow \infty} M(t)$? A) 50 B) 200 C) 500 D) 1000 E) 2000

84. The rate of change, $\frac{d P}{d t}$, of the number of people on an ocean beach is modeled by a logistic differential equation. The maximum number of people allowed on the beach is 1000 . At 10 A.M., the number of people on the beach is 400 and is increasing at the rate of 200 people per hour. Which of the following differential equations describes the situation.
A) $\frac{\mathrm{dP}}{\mathrm{dt}}=\frac{1}{200}(1000-P)$
B) $\frac{\mathrm{dP}}{\mathrm{dt}}=\frac{1}{2} P(1000-P)+100$
C) $\frac{\mathrm{dP}}{\mathrm{dt}}=\frac{1}{3}(1000-P)$
D) $\frac{\mathrm{dP}}{\mathrm{dt}}=\frac{1}{1200} P(1000-P)$
E) $\frac{\mathrm{dP}}{\mathrm{dt}}=200 P(1000-P)$
85. The population $\mathrm{P}(\mathrm{t})$ of a species satisfies the logistic differential equation $\frac{d P}{d t}=P\left(4-\frac{P}{2000}\right)$, where the initial position $\mathrm{P}(0)=1500$ and t is the time in years. What is $\lim _{t \rightarrow \infty} P(t)$?
A) 2500
B) 8000
C) 4200
D) 2000
E) 4000

Let g be a function with $\mathrm{g}(4)=1$, such that all points (x, y) on the graph of g satisfy the logistic differential equation $\frac{d y}{d x}=3 y(2-y)$.
b) Given that $g(3)=1$, find $\lim _{x \rightarrow \infty} g(x)$ and $\lim _{x \rightarrow \infty} g^{\prime}(x)$.
c) For what value of y does the graph of g have a point of inflection? Find the slope of the graph of g at the point of inflection. (It is not necessary to solve for $\mathrm{g}(\mathrm{x})$.)

	Princeton Review (p. 806) 25. Given the differential equation $\frac{d z}{d t}=z\left(6-\frac{z}{50}\right)$, where $\mathrm{z}(0)=50$, what is the $\lim _{t \rightarrow \infty} z(t) ?$ A) 50 B) 100 C) 300 D) 6 E) 25. Given the differential equation $\frac{d z}{d t}=z\left(6-\frac{z}{50}\right)$, where $\mathrm{z}(0)=50$, then z is increasing the fastest when $\mathrm{z}=$ A) 150 B) 100 C) 300 D) 50 E) 100 Other Rate type problems Rogawski 11. The rate at which a certain disease spreads is proportional to the quotient of the percentage of the population with the disease and the percentage of the population that does not have the disease. If the constant of proportionality is .03 , and y is the percent of people with the disease, then which of the following equations gives $R(t)$, the rate at which the disease is spreading. A) $\mathrm{R}(\mathrm{t})=.03 \mathrm{y}$ B) $\mathrm{R}(\mathrm{t})=\frac{.03 d y}{d t}$ C) $\frac{\mathrm{dr}}{\mathrm{dt}}=\frac{.03 R}{(1-R)}$ D) $\mathrm{R}(\mathrm{t})=.03 \frac{\mathrm{y}}{(1-\mathrm{y})}$ E) $\frac{\mathrm{dr}}{\mathrm{dt}}=.03 R$

8.4 Improper Integrals

$\mathbf{2 6 | P a g e}$

10) $\int_{-\infty}^{0} \frac{d x}{(x-2)^{3}}$	
14) $\int_{-\infty}^{0} \frac{2 d x}{x^{2}-4 x+3}$	

$\mathbf{2 7}$ | Page

	18) $\int_{-\infty}^{0} x^{2} e^{x} d x$
$28 \mid P$ age	
4iven curve ln x	
x^{2}	

22) $\int_{-\infty}^{\infty} 2 x e^{-x^{2}} d x$	
	26) $\int_{0}^{1} \frac{d x}{\sqrt{1-x^{2}}}$

29|Page
$\mathbf{3 0 | P a g e}$

[^0]: 5|Page

